Building a Trainable Multi-document Summarizer

نویسنده

  • Himani Apte
چکیده

This paper describes an approach to building a trainable multi-document summarization system, using a simple training process based on support vector machines. The summarization system is trained and tested using the DUC 2005 data set. The evaluation results based on ROUGE scores are presented and methods for improving the performance of the summarization system are identified.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Document Summarization using Automatic Key-Phrase Extraction

The development of a multi-document summarizer using automatic key-phrase extraction has been described. This summarizer has two main parts; first part is automatic extraction of Key-phrases from the documents and second part is automatic generation of a multidocument summary based on the extracted key-phrases. The CRF based Automatic Keyphrase extraction system has been used here. A document g...

متن کامل

Text summarization using a trainable summarizer and latent semantic analysis

This paper proposes two approaches to address text summarization: modified corpus-based approach (MCBA) and LSA-based T.R.M. approach (LSA+T.R.M.). The first is a trainable summarizer, which takes into account several features, including position, positive keyword, negative keyword, centrality, and the resemblance to the title, to generate summaries. Two new ideas are exploited: (1) sentence po...

متن کامل

Three Statistical Summarizers at CLEF-INEX 2013 Tweet Contextualization Track

According to the organizers, the objective of the 2014 CLEFINEX Tweet Contextualization Task is: “...The Tweet Contextualization aims at providing automatically information a summary that explains the tweet. This requires combining multiple types of processing from information retrieval to multi-document summarization including entity linking.” We present three statistical summarizer systems ap...

متن کامل

Significance of Sentence Ordering in Multi Document Summarization

Multi-document summarization represents the information in a concise and comprehensive manner. In this paper we discuss the significance of ordering of sentences in multi document summarization. We show experimental results on DUC2002 dataset. These results show the ordering of summaries before and, improvement in this, after applying sentence ordering. For this purpose we used a term frequency...

متن کامل

Centroid-based summarization of multiple documents

We present a multi-document summarizer, MEAD, which generates summaries using cluster centroids produced by a topic detection and tracking system. We describe two new techniques, a centroid-based summarizer, and an evaluation scheme based on sentence utility and subsumption. We have applied this evaluation to both single and multiple document summaries. Finally, we describe two user studies tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006